

Bandwidth.

- The human voice is a composite signal containing many different frequencies simultaneously.
 - The lowest frequency component of the human voice is approximately 300 Hz.
 - The highest frequency component of the human voice is approximately 3000 Hz.
 - Therefore the bandwidth of the human voice is about 2700 Hz (3000 Hz 300 Hz).

Modulation.

- A simple radio signal with a constant amplitude and a constant frequency conveys no information and cannot be used to communicate.
- In order to communicate, we must add some information to the simple radio signal.
 - Adding information to a signal is called *modulation*.
 - Retrieving the information from the signal is called *demodulation* or *detection*.

Modulation.

- A carrier can be modulated by changing any of its characteristics:
 - Amplitude = Amplitude Modulation (AM).
 - Frequency = Frequency Modulation (FM).
 - Phase = Phase Modulation (PM).
- Different types of modulation are called *modes*.
 - CW, AM, SSB, FM, PM, etc.

Amplitude Modulation (AM).

- The sound waves that make up your voice are a complex mixture of multiple frequencies.
- When this complex mixture is added to the carrier, two sidebands are created that are mirror images.
 - The width of each sideband equals the bandwidth of the modulating signal.

Single Sideband (SSB).

- Used for nearly all HF voice communications.
- Used for most HF digital mode transmissions.
- Used for weak-signal VHF & UHF voice communications.
- Frequencies above 14 MHz typically use USB.
- Frequencies below 7.3 MHz typically use LSB.
 - Exception: 5 MHZ must use USB.

Phase Modulation

- If we vary the phase of the carrier in step with the information waveform, PM is produced.
- PM signals are a lot like FM signals.
- In FM, the amount of deviation is dependent only on the amplitude of the modulating signal.
- In PM, the amount of deviation is dependent on both the amplitude and the frequency of the modulating signal.

T8A12 -- Which of the following is a disadvantage of FM compared with single sideband?

- A. Voice quality is poorer
- B. Only one signal can be received at a time
 - C. FM signals are harder to tune
 - D. All these choices are correct

Bandwidth of Modulated Signals

- SSB has less bandwidth than AM or FM/PM.
 - Therefore, less noise & better reception of weak signals.
 - Contesters and DX'ers normally use SSB for VHF/UHF voice contacts.

T8A03 -- Which type of voice mode is most often used for long-distance (weak signal) contacts on the VHF and UHF bands?

T8A06 -- Which sideband is normally used for 10 meter HF, VHF, and UHF single-sideband communications?

- ➡ A. Upper sideband
 - B. Lower sideband
 - C. Suppressed sideband
 - D. Inverted sideband

T8A08 -- What is the approximate bandwidth of a typical single sideband (SSB) voice signal?

- C. 6 kHz
- D. 15 kHz

T8A10 -- What is the approximate bandwidth of AM fast-scan TV transmissions?

- A. More than 10 MHz
- B. About 6 MHz
- C. About 3 MHz
- D. About 1 MHz

Transmitters and Receivers

Selecting Band, Frequency and Mode.

- Stations in most radio services are assigned one or more specific frequencies that they must operate on.
- Stations in the Amateur Radio Service may operate anywhere they wish within specified ranges of frequencies.
 - The 60m band is the only exception.

Transmitters and Receivers

Selecting Band, Frequency and Mode.

Frequency (MHz)	Wavelength (m or cm)	Frequency (MHz)	Wavelength (m or cm)
1.800 to 2.000	160m	50 to 54	6m
3.500 to 4.000	80m	144 to 148	2m
7.000 to 7.300	40m	222 to 225	1.25m
10.100 to 10.150	30m	420 to 450	70cm
14.000 to 14.350	20m	902 to 928	33m
18.068 to 18.168	17m	1240 to 1300	23m
21.000 to 21.450	15m	2300 to 2310	13m
24.890 to 24.990	12m	2390 to 2450	
28.000 to 29.700	10m		

T4B02 -- Which of the following can be used to enter a transceiver's operating frequency?

- A. The keypad or VFO knob
- B. The CTCSS or DTMF encoder
- C. The Automatic Frequency Control
- D. All of these choices are correct

Transmitters and Receivers

Transmitter Functions.

- Microphones.
 - Hand microphone.
 - Usually supplied with transceiver.
 - Normally has PTT switch.
 - May have power for auxiliary functions.
 - Keypad, frequency control, etc.

Transmitters and Receivers

Transmitter Functions.

- CW key.
 - When operating CW, the transceiver automatically switches to transmit when the key contacts are closed.
 - The dots (dits) and dashes (dahs) that form the Morse code characters are called *elements*.
 - When the operator forms the elements of the code manually, it is called *hand keying*.
 - The operator can be assisted in forming the elements by using special types of keys.

Transmitters and Receivers

Transmitter Functions.

- CW keys.
 - Automatic key.
 - Single-Paddle Key.
 - A single lever attached to 2 sets of contacts.
 - Moving the lever one direction closes one set of contacts.
 - Moving the lever the other direction closes the other set of contacts.

T7A07 -- What is the function of a transceiver's PTT input?

- A. Input for a key used to send CW
- B. Switches transceiver from receive to transmit when grounded
- C. Provides a transmit tuning tone when grounded
- D. Input for a preamplifier tuning tone

65

Transmitters and Receivers

Spurious Signals.

§97.3(a)(43) Spurious emission. An emission, or frequencies outside the necessary bandwidth of a transmission, the level of which may be reduced without affecting the information being transmitted.

Spurious Signals.

• Overmodulation.

• FM.

- Similar to overmodulation of SSB & AM signals.
- Causes excessive bandwidth.
- Can cause complete loss of received signal under certain conditions.

T4B01 -- What is the effect of excessive microphone gain on SSB transmissions?

- A. Frequency instability
- B. Distorted transmitted audio
- C. Increased SWR
- D. All these choices are correct

77

Receiver Functions.

- Automatic gain control (AGC).
 - Not really a control, but rather an internal circuit that functions like a control.
 - Due to propagation changes, the received strength of a signal will vary up and down.
 - For AM modes, as the signal strength varies, the audio output volume will vary accordingly.

Receiver Functions.

- RF gain.
 - Adjusts the gain of the receiver, usually by changing the AGC voltage.
 - Because the S-Meter reading is usually derived from the AGC voltage, turning the RF gain down will result in a higher S-meter reading.

Receiver Functions.

- Squelch.
 - A squelch circuit mutes the receiver audio when no signal is present.
 - Allows the operator to monitor a frequency without hearing constant noise when no signal is being received.
 - Always used in FM/PM receivers.
 - Seldom used in AM/SSB/CW receivers.

T7A04 -- Which term describes the ability of a receiver to discriminate between multiple signals?

- A. Discrimination ratio
- B. Sensitivity
- C. Selectivity
 - D. Harmonic distortion

95

Transmitters and Receivers								
Receiver Functions.								
 Filtering and tuning. 								
 Receivers reject unwanted nearby signals by using band- pass filters. 								
 Want to match filter width to bandwidth of signal. Reduces interference from nearby signals. Reduces noise level. 								
	Mode	Typical Filter Width		Mode	Typical Filter Width			
	CW	500 Hz or less		RTTY	500 Hz			
	SSB	2.4 kHz to 3.0 kHz		Digital	3 kHz to 4 kHz			
	AM	6 kHz to 8 kHz		FM	15 kHz			

Receiver Functions.

- Filtering and tuning.
 - On most multi-mode transceivers, there is a control to assist in tuning the receiver so that the other station's signal sounds natural
 - Receiver incremental tuning (RIT).
 - a.k.a. Clarifier.
 - Allows small changes in receive frequency without changing transmit frequency.

Receiver Functions.

- Noise blanker.
 - Most multi-mode transceivers have a function called a "Noise Blanker" which detects presence of a noise pulse & turns off (blanks) the receiver audio during the pulse.
 - Especially effective on repetitive pulse-type noise.
 - Ignition noise.
 - Electric motors.
 - Fluorescent lamps.

T4B06 -- Which of the following controls could be used if the voice pitch of a single-sideband signal returning to your CQ call seems too high or low?

- A. The AGC or limiter
- B. The bandwidth selection
- C. The tone squelch
- D. The receiver RIT or clarifier

105

T4B10 -- Which of the following receiver filter bandwidths provides the best signal-to-noise ratio for SSB reception?

- A. 500 Hz
- B. 1000 Hz
- ▶ C. 2400 Hz
 - D. 5000 Hz

VHF/UHF Power Amplifiers.

- Multi-mode amplifiers need to operate slightly differently depending on mode and include an SSB/CW-FM switch.
 - SSB position.
 - Required for SSB operations.
 - Best linearity, but less efficient.
 - CW-FM position.
 - Used for CW & FM operations.
 - Best efficiency, but poorer linearity.

T7A10 -- What device increases the transmitted output power from a transceiver?

- A. A voltage divider
- B. An RF power amplifier
- C. An impedance network
- D. All of these choices are correct

Transverters.

- A transverter converts a transceiver's transmit & receive frequency range to an entirely new band.
 - Transverters use mixers to:
 - Shift low-power transmit signals to the new band.
 - Allow received signals on the new band to be heard.
 - A band covered by the transceiver is used as an IF for the desired VHF/UHF/Microwave band.
 - Usually 10m.

Digital Communications

Most HF & some VHF/UHF stations include a computer to:

- Automate many functions.
 - Frequency & mode control.
 - Sending/receiving CW.
 - International Morse Code.
 - Logging, award tracking, & QSL'ing.
- Allow types of operation not otherwise possible.
 - Digital modes.

Digital Communications

Amateur Digital Modes.

- Amateur transceivers designed for voice transmission can be used to send digital information (data) as a series of tones.
- Data modes consist of:
 - Modulation method.
 - How tones are added to RF signal.
 - Protocol.
 - Rules governing how data is converted to tones.

Digital Communications								
Data Modes.	The Inter A	Morse Coo national mors N	de Alphabet se code characters: 0					
• CW.	В	0	1					
	С	P	2					
 CW is actually a "digital" mode. Amplitude modulation (AM). 	D	Q	3					
	E .	R	4					
• International Morse Code.	F G	s t-	5					
Letters A-2 No lower case.	н	U V	7 8					
Numerals 0-9.Some punctuation.	J	W	9					
	K	X	Fullstop					
Some special characters.	L	Y	Comma					
	M	Z	Query					

Digital Communications

Amateur Digital Modes.

- The WSJT Modes.
 - JT9 MF & HF weak signals.
 - FT8 MF, HF, & VHF weak signals.
 - 15-second transmit/receive intervals.
 - FT4 MF, HF, & VHF weak signals.
 - 7.5-second transmit/receive intervals.
 - FT8 modified for contest & DX operations.

T8D01 -- Which of the following is a digital communications mode?

- A. Packet radio
- B. IEEE 802.11
- C. FT8
- ➡ D. All these choices are correct

133

T8D12 -- Which of the following best describes an amateur radio mesh network?

- A. An amateur-radio based data network using commercial Wi-Fi equipment with modified firmware
 - B. A wide-bandwidth digital voice mode employing DMR protocols
 - C. A satellite communications network using modified commercial satellite TV hardware
 - D. An internet linking protocol used to network repeaters

Digital Communications

Amateur Digital Modes.

- Packet and Packet Networks.
 - The checksum is used to detect errors in the received message.
 - If an error is detected, the receiving station requests the transmitting station to send the packet again.
 - This is called Automatic Repeat Request (ARQ).
 - Message will either be received error-free or not at all.

T8D05 -- Which of the following is an application of APRS?

- A. Providing real-time tactical digital communications in conjunction with a map showing the locations of stations
- B. Showing automatically the number of packets transmitted via PACTOR during a specific time interval
- C. Providing voice over internet connection between repeaters
- D. Providing information on the number of stations signed into a repeater

T4A04 -- How are the transceiver audio input and output connected in a station configured to operate using FT8?

- A. To a computer running a terminal program and connected to a terminal node controller unit
- B. To the audio input and output of a computer running WSJT-X software
 - C. To an FT8 conversion unit, a keyboard, and a computer monitor
 - D. To a computer connected to the FT8converter.com website

T4A07 -- Which of the following connections is made between a computer and a transceiver to use computer software when operating digital modes?

- A. Computer "line out" to transceiver push-to-talk
- B. Computer "line in" to transceiver push-to-talk
- C. Computer "line in" to transceiver speaker connector
 - D. Computer "line out" to transceiver speaker connector

T8C11 -- What is an amateur radio station that connects other amateur stations to the internet?

- ➡A. A gateway
 - B. A repeater
 - C. A digipeater
 - D. A beacon

Power Supplies.

- Unregulated supply.
 - Simple circuit.
 - Voltage can vary over a wide range with changing load current.
 - Not good for solid-state radios.

Power Supplies.

- Ratings:
 - Output voltage.
 - Continuous current.
 - How much current can be supplied over the long term.
 - Intermittent current.
 - a.k.a. Surge current or peak current.
 - How much current can be supplied over the short term.
 - Voltage regulation.
 - How well the power supply can handle rapid current changes.

Power Supplies.

- Regulated Power Supplies.
 - Switching.
 - Small & lightweight.
 - Very efficient.
 - More difficult to repair.
 - More expensive.
 - May generate RF noise.

T4A03 -- Why are short, heavy-gauge wires used for a transceiver's DC power connection?

- A. To minimize voltage drop when transmitting
 - B. To provide a good counterpoise for the antenna
 - C. To avoid RF interference
 - D. All these choices are correct

Mobile Power Wiring.

- Fuse **BOTH** positive & negative leads close to the power connection.
- Connect negative lead to negative (-) battery terminal or to battery ground connection.
- Use grommets or sleeves to protect wires where they pass through firewall.
- Do NOT assume that all metal body parts are grounded.

T4A11 -- Where should the negative power return of a mobile transceiver be connected in a vehicle?

- A. At the 12 volt battery chassis ground
 - B. At the antenna mount
 - C. To any metal part of the vehicle
 - D. Through the transceiver's mounting bracket

Batteries.

• The individual cell voltage depends on the materials used to construct the cell.

Chemistry	Cell Voltage	Туре
Lead-Acid	2.1V	Rechargeable
Carbon-Zinc (obsolete)	1.5V	Disposable
Alkaline	1.5V	Disposable*
Nickel-Cadmium (NiCad)	1.2V	Rechargeable
Nickel-Metal-Hydride (NiMH)	1.2V	Rechargeable
Lithium Ion (LI-Ion)	3.6V	Rechargeable

Batteries.

- Battery Charging.
 - Some batteries can be recharged, some cannot.
 - Use the proper charger for the battery being charged.
 - Batteries will wear out over time.
 - Best if batteries are maintained fully charged.
 - Over-charging will cause heating and could damage the battery.

T4A09 -- How can you determine the length of time that equipment can be powered from a battery?

- A. Divide the watt-hour rating of the battery by the peak power consumption of the equipment
- B. Divide the battery ampere-hour rating by the average current draw of the equipment
 - C. Multiply the watts per hour consumed by the equipment by the battery power rating
 - D. Multiply the square of the current rating of the battery by the input resistance of the equipment

T6A11 -- Which of the following battery chemistries is not rechargeable?

- A. Nickel-cadmium
- B. Carbon-zinc
- C. Lead-acid
- D. Lithium-ion

