

General License Class

- Direct Current (DC)
 - Current that always flows in the same direction.
- DC Voltage
 - Voltage that always has the same polarity.

- The unit of measurement is the Hertz (Hz).
 - 1 Hz = 1 cycle per second.

AC and DC Waveforms

- Wavelength.
 - The distance a radio wave travels during the time it takes to complete one cycle.
 - The unit of measurement is usually the meter (m).
 - As the frequency increases, the wavelenth decreases & vice-versa.

dBPower RatioVoltage RatiodBPower RatioVoltage Ratio01.0001.00001.0001.000-10.7940.8911.2591.122-20.6310.7921.5851.259-30.5010.70731.9951.414-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818			Pov	ver a	r	۱d	Dec	ibels
01.0001.00001.0001.000-10.7940.8911.2591.122-20.6310.7921.5851.259-30.5010.70731.9951.414-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	d	IB	Power Ratio	Voltage Ratio		dB	Power Ratio	Voltage Ratio
-10.7940.8911.2591.122-20.6310.7921.5851.259-30.5010.70731.9951.414-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	C	0	1.000	1.000		0	1.000	1.000
-20.6310.7921.5851.259-30.5010.70731.9951.414-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818		1	0.794	0.89		1	1.259	1.122
-30.5010.70731.9951.414-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	-;	-2	0.631	0.79		2	1.585	1.259
-40.3980.63142.5121.585-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	-3	-3	0.501	0.707		3	1.995	1.414
-50.3160.56253.1621.778-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	-4	-4	0.398	0.631		4	2.512	1.585
-60.2500.50164.0001.995-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	-!	-5	0.316	0.562		5	3.162	1.778
-70.2000.44775.0122.239-80.1590.39886.3102.512-90.1260.35597.9432.818	-1	-6	0.250	0.501		6	4.000	1.995
-8 0.159 0.398 8 6.310 2.512 -9 0.126 0.355 9 7.943 2.818	-	.7	0.200	0.447		7	5.012	2.239
-9 0.126 0.355 9 7.943 2.818	-:	-8	0.159	0.398		8	6.310	2.512
	-9	9	0.126	0.355		9	7.943	2.818
-10 0.100 0.316 10 10.00 3.16	-1	10	0.100	0.316		10	10.00	3.16

G5B03 -- How many watts of electrical power are consumed if 400 VDC is supplied to an 800 ohm load?

- A. 0.5 watts
- B. 200 watts
- C. 400 watts
- D. 3200 watts

G5B05 -- How many watts are consumed when a current of 7.0 milliamperes flows through a 1,250-ohm resistance?

- A. Approximately 61 milliwatts
 - B. Approximately 61 watts
- C. Approximately 11 milliwatts
- D. Approximately 11 watts

AC Power

RMS: Definition and Measurement

- A current will heat up a resistor.
- The amount of DC current that causes the same amount of heating as the AC current is called the root-mean-square (RMS) value of the AC current.
 - The AC current dissipates the same average power as the DC current.

- A. 1.4 watts
- ➡ B. 100 watts
 - C. 353.5 watts
 - D. 400 watts

G5B13 -- What is the output PEP of an unmodulated carrier if the average power is 1060 watts?

- A. 530 watts
- B. 1060 watts
- C. 1500 watts
- D. 2120 watts

Basic Components

Prefix	Symbol	Multiplication Factor
Tera	Т	$10^{12} = 1,000,000,000,000$
Giga	G	$10^9 = 1,000,000,000$
Mega	М	$10^6 = 1,000,000$
Kilo	k	$10^3 = 1000$
Hecto	h	$10^2 = 100$
Deca	da	10 ¹ = 10
Deci	d	$10^{-1} = 0.1$
Centi	С	$10^{-2} = 0.01$
Milli	m	10 ⁻³ = 0.001
Micro	μ	$10^{-6} = 0.000001$
Nano	n	10 ⁻⁹ = 0.000000001
Pico	р	$10^{-12} = 0.00000000001$

- Symbol used in equations = R.
- Components designed to provide resistance are called "resistors".

- Longer length \rightarrow lower inductance.
- Any type of core material may be used.

- Inductors.
 - Mutual inductance.
 - If the magnetic field from one inductor extends to another inductor, then the current flowing in the 1st inductor will effect the current flowing in the 2nd inductor. This is called mutual inductance or transformer action.

- Oil-filled.
- Electrolytic / Tantalum.

- A. Tight tolerance
- B. High stability
- C. High capacitance for given volume
- D. Comparatively low cost

G5C01 -- What causes a voltage to appear across the secondary winding of a transformer when an AC voltage source is connected across its primary winding?

- A. Capacitive coupling
- B. Displacement current coupling
- C. Mutual inductance
- D. Mutual capacitance

G5C02 -- What is the output voltage if an input signal is applied to the secondary winding of a 4:1 voltage step-down transformer instead of the primary winding?
A. The input voltage is multiplied by 4
B. The input voltage is divided by 4
C. Additional resistance must be added in series with the primary to prevent overload
D. Additional resistance must be added in parallel with the secondary to prevent overload

- A. To improve the coupling between the primary and secondary
- B. To accommodate the higher current of the primary
 - C. To prevent parasitic oscillations due to resistive losses in the primary
 - D. To ensure that the volume of the primary winding is equal to the volume of the secondary winding

G5C06 -- What is the voltage output of a transformer with a 500-turn primary and a 1500-turn secondary when 120 VAC is applied to the primary?

- A. 360 volts
- B. 120 volts
- C. 40 volts
- D. 25.5 volts

- A. It equals the average of the branch currents
- B. It decreases as more parallel branches are added to the circuit
- C. It equals the sum of the currents through each branch
 - D. It is the sum of the reciprocal of each individual voltage drop

G5C04 -- What is the approximate total resistance of a 100- and a 200-ohm resistor in parallel?

- A. 300 ohms
- B. 150 ohms
- C. 75 ohms
- D. 67 ohms

G5C11 -- What is the inductance of a circuit with a 20-millihenry inductor connected in series with a 50-millihenry inductor?

- A. 7 millihenries
- B. 14.3 millihenries
- C. 70 millihenries
- D. 1,000 millihenries

129

G5C13 -- Which of the following components should be added to a capacitor to increase the capacitance?

- A. An inductor in series
- B. An inductor in parallel
- C. A capacitor in parallel
- D. A capacitor in series

131

G5C14 -- Which of the following components should be added to an inductor to increase the inductance?

- A. A capacitor in series
- B. A capacitor in parallel
- C. An inductor in parallel
- D. An inductor in series

Reactance, Impedance, and Resonance

Reactance

• Capacitive reactance.

• $X_{c} = 1 / (2\pi fC)$

- In a DC circuit (f = 0), $X_c = \infty$.
 - Capacitor looks like an open circuit.
 - After initial charging current, the current flow drops to zero.
- At extremely high frequencies (f = ∞), X_c = 0.
 - Capacitor looks like a short circuit.

Reactance, Impedance, and Resonance

Reactance

- Inductive Reactance
 - Reactance increases with increasing frequency.
 - Inductors oppose changes in current.
 - An inductor passes DC current, resists lowfrequency AC current, & blocks high-frequency AC current.

Reactance, Impedance, and Resonance

Reactance

- Inductive Reactance
 - When energy is first applied to an inductor, the current is zero, & the voltage jumps to a large value.
 - As the inductor charges up, the current climbs to the steady state value and the voltage drops to zero.

Reactance

- Parasitic inductance and capacitance.
 - Real-world components are never "pure" resistance, inductance, or capacitance.
 - They always exhibit all 3 properties.
 - Unwanted inductances or capacitances are called "parasitic".

Reactance

- Parasitic inductance and capacitance.
 - Parasitic capacitance.
 - The construction of physical components results in parasitic capacitances.
 - Between turns in an inductor.
 - Between points where leads are connected to the component.

G5A03 -- Which of the following is opposition to the flow of alternating current in an inductor?

- A. Conductance
- B. Reluctance
- C. Admittance
- D. Reactance

Impedance and resonance

- The opposition to AC current flow caused by resistance, capacitive reactance, inductive reactance, or any combination thereof is called *impedance*.
 - Unit of measurement = Ohm (Ω)
 - Symbol used in equations = Z.

Resonance

 A condition when the frequency of the applied signal matches the "natural" frequency of a circuit.

Resonance

- Resonant circuits are used in:
 - Filters.
 - Tuned stages in receivers & transmitters.
 - Antennas & Traps.

Impedance Matching

- Most modern amateur transmitting equipment is designed to have a source impedance of 50 Ohms.
- Therefore, the load impedance should be 50 Ohms for maximum power transfer to the load.
- This is not usually the case!

Impedance Matching

- Types of matching networks:
 - L-C circuits.
 - Most common type.
 - Lengths of transmission line.
 - Transformers.
 - Cannot eliminate reactance.

G5A10 -- Which of the following devices can be used for impedance matching at radio frequencies?

- A. A transformer
- B. A Pi-network
- C. A length of transmission line
- D. All these choices are correct

General License Class

Next Week Chapter 4

Components & Circuits (Part 2)